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1. INTRODUCTION

Let Lyl (a> -1) denote the Laguerre polynomials of degree i where a
is a parameter. For IE C[O, 1J, consider the Bernstein power series
operator [2J

O~v~a< 1,

(1.1 )

where w ~°is a parameter. Cheney and Sharma [2J proved that, for
VE [0, a],

w
as n --+ 00 and - --+ 0,

n
(1.2 )

and the convergence is uniform. Khan [5J provided a probabilistic proof
of (1.2) by using weak convergence of probability measures. For
w = 0, (1.1) reduces to the modified Meyer-Konig Zeller operator:

MnCf, v) = (1- vt+ 1 I. I(-!-)(n -:i) vi.
i=O J+n J

Cheney and Sharma [2J proved that if I is convex then

(1.3)

(1.4 )

for all n. By usmg properties of conditional expectations of negative
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binomial distribution, Khan [5J provided a simple probabilistic proof of
(1.4). The Meyer-Konig Zeller operator (unmodified) is defined as

+ 1 Lx f( J )(n+J) .,.Kn(f, v) = (1 - v)n V
i~O J+n+l J .

(1.5)

Convergence properties of Kn(f, v) are available in [9, pp. l64-169J for
differentiable functions. Kn(f, v) is analogously extended to

Zn(f,V)=(1-v)n+'exP(~)If(. J ) L;n)(w) vi, (1.6)
I-v i~O J+n+l

0:::;; v:::;;a < 1, where w:::;;O is a parameter.
In this paper, the rates of convergence of (1.1 ) and (1.6) are obtained for

both continuous functions and discontinuous functions of bounded varia­
tion. Furthermore, it is shown that (1.4) type inequality holds for (1.5)
when f is continuous and convex.

2. AN EXTENSION

Many classical operators can be simultaneously studied by the following
operator. Let {Xi. n;J = 1, 2, ... , n; n ~ 1} be a triangular array of independ­
ent random variables such that for each fixed n, X'.n' X 2.n, ..., Xn.n are
identically distributed with E(X] n) = Jln(x) and finite variance Var(X\ n) =
(J"~(x»O, where xEI~1R is a 'real parameter. Define Sn=X1• n+ .... +
Xn.no Let h be a well-defined measurable function on IR and let {an} be a
sequence of positive numbers. Define an approximation operator by

when Elh(anSn)1 < C/J, where Fn.Au) is the distribution function (dJ.) of
Sn' If Xi. n' J= 1,2, ..., n, are identically distributed for all n, Jln(x) = x,
(J"~(x) = (J"2(X) > 0, and an = lin then An(h, x) reduces to the Feller operator
[3]. Khan [5,6] studied the properties of the Feller operator for hE C(IR).
Khan [4] provided the rate of convergence of the Feller operator for
hE BV(IR).

It is simple to verify (see [5 J for example) that a number of classical
operators, such as Bernstein, Szasz, Baskakov, Gamma, and Weirstrass
operators, are special cases of the Feller operator. However, to study (1.1)
and (1.6) one needs the extension provided in (2.1).

To show that (1.1) and (1.6) are special cases of (2.1), we proceed as
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follows. Let Xo. 'I' X I.'I' ... , X"." be a sequence of independent and identi­
cally distributed triangular arrays of random variables with the probability
mass function (which we will refer to as the Laguerre distribution)

(
w*V) .P(Xo.,,=j)=(1-v)exp I-v LjO)(w*) v}

for j=O,I,2, ...,O~v~a<I,w*=w/(n+I),w~O. The generating
function of Xo,,, is

(
w*V) (-w*SV)4Jxo)s)=(I-v)exp -- (I-sv)-lexp .
1 - v 1- sv

The generating function of S" + I = Xo,,, + XI,,, + ... + X"." is obtained by
the convolution property as

(
wv ) (-WSV)4Js (s)=(I-vt+lexp -- (1-sv)-C,,+I)exp -- .

n+1 I-v I-sv

By comparing 4Js
n
+Js) with the generating function of Laguerre polyno­

mials [8], the probability mass function of S" + I is obtained as

P(S,,+ 1= j) = (1- v)n+ I exp Cc:v) Ly)(w) vi, (2.2)

j=O, I,2, ...,O~v~a<l, w~o. Clearly, for jEC[O, 1] and vE[O,a],
a< 1,

where a,,+I=I/n, h(I)=j(r(t)), r(I)=I/(1+I), I~O. Hence, P,,(f,v)=
A" + I(h, x) where x = v/( 1 - v). Similarly, if we take a" + I = (n + 1) -I then
Z,,(f, v) =A,,+ I(h, x).

The following identities concerning Laguerre distribution will be needed
in the sequel,

v2 -(I-w*)v
E(Xo.,,) = - (v-I)2

(I+w*)v2 +(w*-I)v
Var(Xo,,,)= (v-I)3

(2.3 )

(2.4 )

(2.5)
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where

'1 =V
6 + (7w* + 1) v5 + (6W*2_4w* -8) V

4

'2 = (W*3 - 3W*2 - 12w* + 8) v3 + (- 3W*2 + 8w* - 1) v2 + (w* - 1) v.

3. MAIN RESULTS (CONTINUOUS CASE)
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THEOREM 1. Let An(h, x) be as defined by (2.1) and hE C(I). Then for
n= 1, 2, ...

IAn(h, x) - h(x)1 ~ (1 + Kn(x)) w (h' ~),

where w(h, b) is the modulus of continuity of hand

Kn(x) = (nanCTn(xW + n(nanJ.ln(x) - xf

Proof For 15 > 0,

Ih(y)-h(x)1 ~ (1 + [Iy-xl/b]) w(h, b),

where [z] is the greatest integer ~ z. Therefore,

(3.1 )

IAn(h, x) - h(x)1 ~ Elh(anSn) - h(x)1

~ (1 + E[lanSn- x 1/15]) w(h, b)

~ (1 + E(anSn- x)2/b2) w(h, b)

= (l + {a~ Var(Sn) + (nanJ.ln(x) - X)2 }/b2) w(h, b).

By taking 15 = 1/~, the result follows.

LEMMA 1. Let X 1•n, ... , X n.n be a sequence of independent and identically
distributed (for all n) non-negative random variables with finite expectation.
Let {an} be a sequence ofpositive numbers such that {nan} is non-increasing.
Then

a.s.

E{an_1Sn_lISn} ~ anSn-

Equality holds if {nan} is constant.

Proof It is well known [5] that

E(Sn-lISn)~'Sn.
n-1 n
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Therefore, if {nan} is constant, then the lemma follows. Otherwise,

E(an_,Sn_,ISn)~' an ,E(Sn_lISn)

a.s. (n -1)
= an-, -n- Sn

since {nan} is non-increasing.

THEOREM 2. Let An(h, x) be as defined in (2.1) where X are non-
I. n

negative random variables identically distributed for all n. Let h be
non-decreasing and convex and {nan} be a non-increasing sequence of
positive numbers. Then for n = 2, 3, ...

Proof

A n_ 1(h, x)=E(h(an_1Sn_d)

= E{E(h(an_ 1Sn_ d ISn)}

3E{h(E(an ,SnlISn))}

?'E{h(anSn)}

= An(h, x).

Jensen's inequality

monotonicity and Lemma 1

Remark. h need not be non-decreasing in Theorem 2 if an = lin [5].

4. MAIN RESULTS (DISCONTINUOUS CASE)

In this section, unless otherwise stated, it will be assumed that h is a
normalized function of bounded variation. Also, it will be assumed that
EI xL I < (fJ for n = 1, 2, .... The results obtained in this section extend the
results in [4]. The following theorem, an extension of the Barry-Esseen
bound for the central limit Theorem [7, pp. 62], will be needed in the
sequel.

THEOREM 3. Let {Yj , n' j = I, 2, ..., n} be a triangular array of random
variables. Suppose that for each n the random variables Y1, n' ... , Yn,n are
independent with zero means, and are normalised so that their variances add
up to one:

L E(Yin)= 1, n?' 1.
1= I
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Also, let maxh/,,;nE(Y;'n)--+O as n--+CIJ and let Tn='Lf=1 Yj,n" Assume
that Lindeberg's condition holds,

n

L E(YJ k 1(1 Yj,n I > e)) --+ 0
i~ I

as n --+ 00 for all e > 0,

where 1 is the characteristic function, Then there exists a numerical constant
c < 00 such that for all z and all n, if F: is the dJ, of Tn and G* is the dJ.
of a standard normal random variable, then

n

1F:(z)-G*(z)1 ~c L EIY/,nI 3
•

j~ I

Here
I r= 2'2G*(Z)=--J e- Uj duo
~ -Cfj

In our case, namely (2.1), Xl,n, X1,n, ... , Xn,n are identically distributed.
Define

Y . = Xi. n- fln(X)
I n r... ., v n(Jn(x)

Clearly, maxI ";/";n E( Y], n) = lin --+ 0 as n --+ 00. Furthermore, Lindeberg's
condition would hold if

lim EI Xl, n- fln(XW = 0
n~CfJ fi(J~(x) .

For Bernstein power series, namely (1.1) and (1.6), EI XI n- fln(XW = 0(1)
and (J~(x) --+ x(1 - x) -2. Therefore Lindeberg's condition would hold.
Hence, Theorem 3 simplifies to

IF~,Az)-G*(z)1 ~CEI~-fln(XW,
n(J~(x)

where

F:,Az) = P ( .fiz (~n - fln(X))I(In(x) ~ z).
THEOREM 4. Let hE BV( - 00, 00), and

lim EI X1,n - fln(XW = o.
n~ CfJ .fiz (J~(x)
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Then for every x E ( - 00, (0) and all n = 1, 2, ...,for the operator (2.1) we
have

- Pn(x) ~ Qn(x)-
IAn(h,x)-h(x)I~--L. Vh(g.)+ r:. h(x),

n k ~O Y n

where Ik = [x -l/jk, x + l/jkJ, k = 1, 2, ..., n, 10 = (- 00, <Xl). Pn(x) =
2Kn(x) + 1, where Kn(x) is provided in (3.1),

SeEIXl n-tln(x)j3 Inantln(x)-xl
Qn(x)= '3 + M: '

2I1n(X) y2nanl1Ax)

h(x)= Ih(x+)- h(x- )1, h(x) = (h(x+) + h(x- ))/2, e is given in Theorem 3,
and

l
h(t) - h(x+)

gAt) = 0
h(t)-h(x-)

Proof Note that since h is normalized,

if t>x

if t=x
if t < x.

where

~ -1
sgnAt) = ( ~

Hence,

if t>x

if t = x
if t <x.

First consider

An(sgnx, x) = P(anSn> x) - P(anSn< x)

= 1 - 2P(anS n~ x) + P(anSn= x)

= 2(~ - F~, x(tn)) + F:' xU;;) - F:' At;;),

where tn=(x-nantln(x))/(anl1n(x)v7z). Therefore,

IAn(sgn" x)1 ~ 2IF~, x(tn) - G*(O)I + IF~, Atn) - F~, At;; )\.
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Now

IAn(sgn" x)1 ~ 2{ IF~, ,(tn) - G*(tn)1 + IG*(tn) - G*(O)I}

+ 1F:,,(tn)-G*(tn)1 + IG*(tn)-F:'At;)I·

Note that for any en'

97

Now

IF~, ,(tn ± en) - G*(tn)1 ~ IF~, ,(tn ± en) - G*(tn ± en)1

+ IG*(tn ± en) - G*(tn)l·

It is easy to verify that for all Z E ( - 00, (0),

Therefore, by Theorem 3,

IA ( . )1~2{eEIXI,n-Jin(X)13+M}
n sgnx ' x "'" r:.. 3 h:.

ynO'n(X) y2n

2eEI Xl n- " n(xW len I+ ,'" +--
.fii O'~(X) jb£'

Take en = e j2;EI Xl, n- Jin(xW/(.fii O'~(x)). Then,

IA ( )1 ~~ {SeEI Xl, n- Jin(x)1
3+ Ix - nanJin(X)I}

n sgn x ' x "'" r:.. 3 h:.
. y n 20'n(X) y 2nanO'n(X)

2
= .fii Qn(X)'

Now consider An(g"X),g,EBV(-CXJ,oo),gAx)=O. For simplicity of
notation V[a,b](g,) = V[a,b] will denote the total variation of gx on [a, b].
The following technique is due to Bojanic and Vuilleumier [1],

where Fn. At) = P(anSn~ t), IX = x -1/.fii, and f3 = x + l/.fii;

II·f gAt)dFn,At)l~f IgAt)-gAx)ldFn,At)~Vln' (4.1)
(~, (3) (~, (3)
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Integrating by parts, one gets

[x gAt) dFn,At) = gAa +) Fn,Aa) +[x in, At) d( - gAt)),

where Fn,At) is the normalized form of Fn,At) and t ~ a < x,
Id( -gAt))1 ~dl( - V[I,X])' Also

Fn,At) ~ Fn,At) = P(anSn~ t)

~P(lanSn-xl~ It-xl)

by Chebyshev's inequality,

Let ~n(x) = E(anSn- X)2 = na~(J~(x) + (x - nan,unf Therefore, Fn,Aa) ~
n~n(x), Hence,

Integrating by parts and a change of variable, one gets

where for k = 0, [x - k- 1
/
2

, x] = (- 00, xl Hence,

Similarly, by using the fact that Sn, At) = 1- Fn,At) = P(anSn> t) is the left
continuous, non-increasing survival function for the random variable anSn,
one gets

Combining (4.1), (4.2), and (4.3), we get

2n~n(x) + 1 n
IAn(g" x)1 ~ L V/k'

n k~O

By letting Pn(x) = 2n~n(x) + 1, the theorem follows.
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5. SPECIAL CASES
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In the following, a few examples are provided. The emphasis is to show
the versatility of Theorems 1, 2, and 4 and to provide explicit expressions
for Kn(x), Pn(x), and Qn(x) in each case.

5.1. Feller Operator

Let X 1• n, X 2.n, ..., Xn.n be independent and identically distributed
random variables for all n = 1, 2, ... (i.e., the dJ. of Xl. n does not depend
on n) such that E(X1.,,) =J-ln(x) =x, Var(XI.n)=a~(x)=a2(x).Let an= lin.
Then

Ln(h, x) is known as the Feller operator (cf. [5]). Now Kn(x) = a2(x) and
Theorem I specializes to

(5.1 )

This result is given in [5], Since nan = 1, Theorem 2 provides that

for convex functions h. This result is proved in [5] as well. By Theorem 4,
we get

_ 2a 2(x) + I n 5cEIX11 -xI 3 _
ILn(h,x)-h(x)l::::; L V/k+ r=' h(x).

n k~O V n 2a 3(x)

This result is provided in [4]. For specific examples for Bernstein, Szasz,
Baskakov, Gamma, and Weirstrass operators see [4, 5, 6].

5.2. Bernstein Power Series (Modified)

As shown in Section 2, Pn(f,v)=An+l(h,x) where an+1 =l/n, h(t)=
f(r(t)), r(t)=tl(l+t), t~O, and x=v/(l-v). Now XO,n,Xl,n,,,,,Xn.n are
independent and identically distributed random variables with

P(Xo.n= j) = (l - v) exp (w* _V_) LJOl(w*) vi
I-v

I ( x )J=--exp(w*x) L\Ol(w*) -- ,
l+x } l+x
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j = 0, 1,2, ..., w* = w/(n + 1), and w:::;; 0. From (2.3), (2.4), and (2.5),

-. x as n -. 00

2 (l+w*)v2+(w*-I)v
O'n(x)=Var(Xon )= 3 =x(l+x)(l-w*-2w*x)

. (v-I)

-. x(1 + x) = 0'2(X) as n -. 00

E(Xo,n)3 = An(X) = -x(x5 + (7w* + 1) x 4 (x + 1)

+(6W*2_4w*-S)x3(x+ 1)2

+(w*3-3w*2-12w*+S)x2(x+ 1)3

+ (- 3W*2 + Sw* - 1) x(x + 1)4

+ (w * - 1)(x + 1)5 ).

Hence,

(
n + 1)2

K n+ 1(x)= -n- x(l+x)(l-w*-2w*x)

(
n+ 1 )2

+(n+ 1) -n-(x-x(1 +x)w*)-x .

Clearly limn~oo K n+ 1(x)=x(1 +x). By Theorem 1,

Since w(h, c5):::;; w(J, c5), by Theorem lone gets

Note that if 0< v:::;; a < 1, then the convergence is uniform. Also, if f is
increasing and convex on [0, 1] then h is increasing and convex on [0, 00).
Since {nan} is non-increasing, by Theorem 2, for increasing convex
functions J, n = 3, 4, ...,
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k= 1, 2, ...,

if l~u>v

if u=v

if °~ u < v,

To apply Theorem 4, first note that if fEBV[O, 1] then hEBV[O, (0).
Extend h(t)=h(O) for t<O. From (2.3), (2.4), and (2.5) we get

E/Xo,n-/lAx)/3 ~ pAx) = AAx) + 3/ln(x) 11~(X)+ 7/l~(x).

Hence,
_ 2Kn+l(X)+ln~1

IA n+l(h, x) - h(x)1 ~ L. Vh(gJ
n k~O

5cPn(x) I(n+l)/ln(x)-nxl

2o-~(x) + -Jbco- (x) _
+ ~ n h(x).

Now, note that for O~v~a< 1, h(x+)=f(v+), h(x-)=f(v-),
Ii(x) =!(v), and h(x) = ](v). Furthermore, V'k(gJ = V,;(g:) where

l
f(u)-f(v+)

g:(u) = 0
f(u)-f(v-)

* _ [VJk - (l - v) vJk + 1- vJ
/k - 11. '11. il [0, 1],

y'k-(1-v) y'k+l-v

and /t = [0, 1]. Hence,

IPn(f, v) -f(v)1 ~ 2Kn+ l(V({l- v)) + 1nf V,;(g:)
n k=O

5cP~(v(I-v» + 'n(v)
2I1Av/(l- v) ]( )+ .;;z v , (5.2)

where 'n(v) = I(n + 1) /In(v/( 1 - v» - nv/( 1- v)1/k/2;o-n(v/(l- v»).
We may remark in passing that if v is a continuity point of f, then

asymptotically the above bound is essentially the best possible. To verify
this, let

p(u) = lu- vi for u E [0, 1], vE (0, 1).

Now g:(u)=p(u), and LZ~o V,·(g:)~AJ+A2~ where AI> A2 are
constants. Since, K n + l(v/(I- v» = 0(1), the right-hand side of (5.2) is
O(l/.,fiz). On the other hand,

Pn(p, v) =E{h(an+1Sn+ I)}

-EI Sn+l -vi
- n+Sn+l '
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where v=x/(1+x). And for r=v(1-v)2

r:.( Sn+t )yn -v
n + Sn+!

weakly N(O )• ,r ,

where N(O, v) is a normal random variable with mean 0 and variance v.

Also, .fi ISn + d(n + Sn + d - vi are uniformly integrable random variables.
Consequently,

.fiIPn(P,V)-P(V)I=E[.fi( Sn+! -v)1
n +Sn+!

~EIN(O, r)1 =Jfr
which verifies the asertion.

5.3. Bernstein Power Series (Unmodified)

For the sake of completeness, analogous results are provided for Zn(f, v).
By Theorem 1, for continuous f

IZnU; v)-f(v)1 = IAn+t(h, x)-h(x)1

where

K:+ l(X) = x(1 + x)(1- w* - 2w*x) + (n + 1)(x(l + x) W*)2.

By Theorem 2, for continuous and convex functions f, n = 3, 4, ... ,

Kn- 2(f, v) = An_t(h, x) ~ An(h, x) = Kn-t(f, v).

Finally by Theorem 4, for fE BV[O, 1],

IZn(f, v) - f(v)1 ~ 2K:+ I(V/~ - v)) + 1 :t~ Vt;(gn + (}n(V),fi:(V) ](v),

where ':(v) =n Illn(v/(1- v)) - v/(1- v)I(~an(v/(1-v))) and

(} ( = 5cPn(v/(1- v))
n v) 2a~(v/(l- v)) .

Again, if v is a continuity point of f, then asymptotically the above
bound is essentially the best possible.
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